Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(3): e202313870, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38051128

RESUMO

Staphylococcus aureus (S. aureus) has evolved the ability to persist after uptake into host immune cells. This intracellular niche enables S. aureus to potentially escape host immune responses and survive the lethal actions of antibiotics. While the elevated tolerance of S. aureus to small-molecule antibiotics is likely to be multifactorial, we pose that there may be contributions related to permeation of antibiotics into phagocytic vacuoles, which would require translocation across two mammalian bilayers. To empirically test this, we adapted our recently developed permeability assay to determine the accumulation of FDA-approved antibiotics into phagocytic vacuoles of live macrophages. Bioorthogonal reactive handles were metabolically anchored within the surface of S. aureus, and complementary tags were chemically added to antibiotics. Following phagocytosis of tagged S. aureus cells, we were able to specifically analyze the arrival of antibiotics within the phagosomes of infected macrophages. Our findings enabled the determination of permeability differences between extra- and intracellular S. aureus, thus providing a roadmap to dissect the contribution of antibiotic permeability to intracellular pathogens.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Animais , Staphylococcus aureus/fisiologia , Antibacterianos/farmacologia , Macrófagos , Fagossomos , Fagocitose , Infecções Estafilocócicas/tratamento farmacológico , Mamíferos
2.
bioRxiv ; 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37904977

RESUMO

Cytotoxic T lymphocytes are the primary effector immune cells responsible for protection against cancer, as they target peptide neoantigens presented through the major histocompatibility complex (MHC) on cancer cells, leading to cell death. Targeting peptide-MHC (pMHC) complexes offers a promising strategy for immunotherapy due to its specificity and effectiveness against cancer. In this work, we exploit the acidic tumor micro-environment to selectively deliver antigenic peptides to cancer cells using pH(low) insertion peptides (pHLIP). We demonstrated that the delivery of MHC binding peptides directly to the cytoplasm of melanoma cells resulted in the presentation of antigenic peptides on MHC, and subsequent activation of T cells. This work highlights the potential of pHLIP as a vehicle for targeted delivery of antigenic peptides and their presentation via MHC-bound complexes on cancer cell surfaces for activation of T cells with implications for enhancing anti-cancer immunotherapy.

3.
bioRxiv ; 2023 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-36824967

RESUMO

Staphylococcus aureus ( S. aureus ) has evolved the ability to persist after uptake into host immune cells. This intracellular niche enables S. aureus to potentially escape host immune responses and survive the lethal actions of antibiotics. While the elevated tolerance of S. aureus to small-molecule antibiotics is likely to be multifactorial, we pose that there may be contributions related to permeation of antibiotics into phagocytic vacuoles, which would require translocation across two mammalian bilayers. To empirically test this, we adapted our recently developed permeability assay to determine the accumulation of FDA-approved antibiotics into phagocytic vacuoles of live macrophages. Bioorthogonal reactive handles were metabolically anchored within the surface of S. aureus, and complementary tags were chemically added to antibiotics. Following phagocytosis of tagged S. aureus cells, we were able to specifically analyze the arrival of antibiotics within the phagosomes of infected macrophages. Our findings enabled the determination of permeability differences between extra- and intracellular S. aureus , thus providing a roadmap to dissect the contribution of antibiotic permeability to intracellular pathogens.

4.
Chembiochem ; 23(20): e202200412, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36018606

RESUMO

The surfaces of most Gram-positive bacterial cells, including that of Staphylococcus aureus (S. aureus), are heavily decorated with proteins that coordinate cellular interactions with the extracellular space. In S. aureus, sortase A is the principal enzyme responsible for covalently anchoring proteins, which display the sorting signal LPXTG, onto the peptidoglycan (PG) matrix. Considerable efforts have been made to understand the role of this signal peptide in the sortase-mediated reaction. In contrast, much less is known about how the primary structure of the other substrate involved in the reaction (PG stem peptide) could impact sortase activity. To assess the sortase activity, a library of synthetic analogs of the stem peptide that mimic naturally existing variations found in the S. aureus PG primary sequence were evaluated. Using a combination of two unique assays, we showed that there is broad tolerability of substrate variations that are effectively processed by sortase A. While some of these stem peptide derivatives are naturally found in mature PG, they are not known to be present in the PG precursor, lipid II. These results suggest that sortase A could process both lipid II and mature PG as acyl-acceptor strands that might reside near the membrane, which has not been previously described.


Assuntos
Aminoaciltransferases , Staphylococcus aureus , Peptidoglicano/metabolismo , Aminoaciltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Relação Estrutura-Atividade , Sinais Direcionadores de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...